Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

On the electronic origin of the inverse magnetocaloric effect in Ni-Co-Mn-In Heusler alloys

Identifieur interne : 000103 ( Russie/Analysis ); précédent : 000102; suivant : 000104

On the electronic origin of the inverse magnetocaloric effect in Ni-Co-Mn-In Heusler alloys

Auteurs : RBID : Pascal:10-0156862

Descripteurs français

English descriptors

Abstract

In order to understand the electronic origin of the inverse magnetocaloric effect observed in a Ni-Co-Mn-In system we used a combination of indirect experimental probes as magnetization, resistivity and specific heat. The findings are compared with the band structure of isostructural Heusler alloys such as Ni-Mn-Ga. We suggest that the inverse magnetocaloric effect in Ni-Co-Mn-In originates from the high density of states close to Fermi energy. Within the austenite state this causes ferromagnetic band splitting. The structural change to the martensite allows an alternative way to reduce the high density of states at lower temperatures, which does not require band splitting and thus does not support ferromagnetic order.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0156862

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">On the electronic origin of the inverse magnetocaloric effect in Ni-Co-Mn-In Heusler alloys</title>
<author>
<name sortKey="Vasiliev, A N" uniqKey="Vasiliev A">A. N. Vasiliev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Low Temperature Physics and Superconductivity Department, Moscow State University</s1>
<s2>Moscow 119991</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Heczko, O" uniqKey="Heczko O">O. Heczko</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>IFW Dresden, Institute for Metallic Materials, PO Box 27 01 16</s1>
<s2>01171 Dresden</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>01171 Dresden</wicri:noRegion>
<wicri:noRegion>PO Box 27 01 16</wicri:noRegion>
<wicri:noRegion>01171 Dresden</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of Physics, Academy of Sciences of Czech Republic, Na Slovance 2</s1>
<s2>Prague</s2>
<s3>CZE</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>République tchèque</country>
<wicri:noRegion>Prague</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Volkova, O S" uniqKey="Volkova O">O. S. Volkova</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Low Temperature Physics and Superconductivity Department, Moscow State University</s1>
<s2>Moscow 119991</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vasilchikova, T N" uniqKey="Vasilchikova T">T. N. Vasilchikova</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Low Temperature Physics and Superconductivity Department, Moscow State University</s1>
<s2>Moscow 119991</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Voloshok, T N" uniqKey="Voloshok T">T. N. Voloshok</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Low Temperature Physics and Superconductivity Department, Moscow State University</s1>
<s2>Moscow 119991</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Klimov, K V" uniqKey="Klimov K">K. V. Klimov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Low Temperature Physics and Superconductivity Department, Moscow State University</s1>
<s2>Moscow 119991</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ito, W" uniqKey="Ito W">W. Ito</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>IMRAM, Tohoku University</s1>
<s2>6-6-02 Aoba-yama, Sendai 980-8579</s2>
<s3>JPN</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>6-6-02 Aoba-yama, Sendai 980-8579</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kainuma, R" uniqKey="Kainuma R">R. Kainuma</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>IMRAM, Tohoku University</s1>
<s2>6-6-02 Aoba-yama, Sendai 980-8579</s2>
<s3>JPN</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>6-6-02 Aoba-yama, Sendai 980-8579</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ishida, K" uniqKey="Ishida K">K. Ishida</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Department of Materials Science, Graduate School of Engineering, Tohoku University</s1>
<s2>6-6-02 Aoba-yama, Sendai 980-8579</s2>
<s3>JPN</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>6-6-02 Aoba-yama, Sendai 980-8579</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Oikawa, K" uniqKey="Oikawa K">K. Oikawa</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Department of Materials Science, Graduate School of Engineering, Tohoku University</s1>
<s2>6-6-02 Aoba-yama, Sendai 980-8579</s2>
<s3>JPN</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>6-6-02 Aoba-yama, Sendai 980-8579</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="F Hler, S" uniqKey="F Hler S">S. F Hler</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>IFW Dresden, Institute for Metallic Materials, PO Box 27 01 16</s1>
<s2>01171 Dresden</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>01171 Dresden</wicri:noRegion>
<wicri:noRegion>PO Box 27 01 16</wicri:noRegion>
<wicri:noRegion>01171 Dresden</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0156862</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0156862 INIST</idno>
<idno type="RBID">Pascal:10-0156862</idno>
<idno type="wicri:Area/Main/Corpus">004808</idno>
<idno type="wicri:Area/Main/Repository">003C13</idno>
<idno type="wicri:Area/Russie/Extraction">000103</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-3727</idno>
<title level="j" type="abbreviated">J. phys., D. Appl. phys. : (Print)</title>
<title level="j" type="main">Journal of physics. D, Applied physics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Band splitting</term>
<term>Band structure</term>
<term>Cobalt alloys</term>
<term>Electrical conductivity</term>
<term>Electronic density of states</term>
<term>Fermi level</term>
<term>Ferromagnetic materials</term>
<term>Ferromagnetism</term>
<term>Heusler alloys</term>
<term>Indium alloys</term>
<term>Inverse problems</term>
<term>Magnetically soft alloy</term>
<term>Magnetization</term>
<term>Magnetocaloric effects</term>
<term>Manganese alloys</term>
<term>Martensitic transformations</term>
<term>Nickel alloys</term>
<term>Specific heat</term>
<term>Transition element alloys</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Effet magnétocalorique</term>
<term>Aimantation</term>
<term>Conductivité électrique</term>
<term>Chaleur massique</term>
<term>Structure bande</term>
<term>Densité état électron</term>
<term>Niveau Fermi</term>
<term>Décomposition bande</term>
<term>Ferromagnétisme</term>
<term>Transformation martensitique</term>
<term>Alliage ferromagnétique</term>
<term>Problème inverse</term>
<term>Manganèse alliage</term>
<term>Alliage Heusler</term>
<term>Matériau ferromagnétique</term>
<term>Nickel alliage</term>
<term>Cobalt alliage</term>
<term>Indium alliage</term>
<term>Métal transition alliage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In order to understand the electronic origin of the inverse magnetocaloric effect observed in a Ni-Co-Mn-In system we used a combination of indirect experimental probes as magnetization, resistivity and specific heat. The findings are compared with the band structure of isostructural Heusler alloys such as Ni-Mn-Ga. We suggest that the inverse magnetocaloric effect in Ni-Co-Mn-In originates from the high density of states close to Fermi energy. Within the austenite state this causes ferromagnetic band splitting. The structural change to the martensite allows an alternative way to reduce the high density of states at lower temperatures, which does not require band splitting and thus does not support ferromagnetic order.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-3727</s0>
</fA01>
<fA02 i1="01">
<s0>JPAPBE</s0>
</fA02>
<fA03 i2="1">
<s0>J. phys., D. Appl. phys. : (Print)</s0>
</fA03>
<fA05>
<s2>43</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>On the electronic origin of the inverse magnetocaloric effect in Ni-Co-Mn-In Heusler alloys</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>VASILIEV (A. N.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HECZKO (O.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>VOLKOVA (O. S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>VASILCHIKOVA (T. N.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>VOLOSHOK (T. N.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>KLIMOV (K. V.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>ITO (W.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>KAINUMA (R.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>ISHIDA (K.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>OIKAWA (K.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>FÄHLER (S.)</s1>
</fA11>
<fA14 i1="01">
<s1>Low Temperature Physics and Superconductivity Department, Moscow State University</s1>
<s2>Moscow 119991</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>IFW Dresden, Institute for Metallic Materials, PO Box 27 01 16</s1>
<s2>01171 Dresden</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institute of Physics, Academy of Sciences of Czech Republic, Na Slovance 2</s1>
<s2>Prague</s2>
<s3>CZE</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>IMRAM, Tohoku University</s1>
<s2>6-6-02 Aoba-yama, Sendai 980-8579</s2>
<s3>JPN</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Department of Materials Science, Graduate School of Engineering, Tohoku University</s1>
<s2>6-6-02 Aoba-yama, Sendai 980-8579</s2>
<s3>JPN</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA20>
<s2>055004.1-055004.7</s2>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>5841</s2>
<s5>354000189312470040</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>40 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0156862</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physics. D, Applied physics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In order to understand the electronic origin of the inverse magnetocaloric effect observed in a Ni-Co-Mn-In system we used a combination of indirect experimental probes as magnetization, resistivity and specific heat. The findings are compared with the band structure of isostructural Heusler alloys such as Ni-Mn-Ga. We suggest that the inverse magnetocaloric effect in Ni-Co-Mn-In originates from the high density of states close to Fermi energy. Within the austenite state this causes ferromagnetic band splitting. The structural change to the martensite allows an alternative way to reduce the high density of states at lower temperatures, which does not require band splitting and thus does not support ferromagnetic order.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70E30S</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70E60E</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A30K</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Effet magnétocalorique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Magnetocaloric effects</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Aimantation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Magnetization</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Chaleur massique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Specific heat</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Structure bande</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Band structure</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Densité état électron</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Electronic density of states</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Niveau Fermi</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Fermi level</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Décomposition bande</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Band splitting</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Separación banda</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Ferromagnétisme</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Ferromagnetism</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Transformation martensitique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Martensitic transformations</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Alliage ferromagnétique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Magnetically soft alloy</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Aleación ferromagnética</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Problème inverse</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Inverse problems</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Manganèse alliage</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Manganese alloys</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Alliage Heusler</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Heusler alloys</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Matériau ferromagnétique</s0>
<s5>18</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Ferromagnetic materials</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Nickel alliage</s0>
<s5>19</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Nickel alloys</s0>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Cobalt alliage</s0>
<s5>20</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Cobalt alloys</s0>
<s5>20</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Indium alliage</s0>
<s5>21</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Indium alloys</s0>
<s5>21</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Métal transition alliage</s0>
<s5>48</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Transition element alloys</s0>
<s5>48</s5>
</fC03>
<fN21>
<s1>102</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000103 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000103 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:10-0156862
   |texte=   On the electronic origin of the inverse magnetocaloric effect in Ni-Co-Mn-In Heusler alloys
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024